
*Based on Berczuk and Appleton:

“Software Configuration

Management Patterns” 1

1.0 2.0 3.0 4.0

Mainline (Trunk)

Active Development Line

Repository

Private Workspace

r7

r2 r3 r4

r8 Private System Build

Integration Build

3-party Codeline

r2 r3 r4

Task Level Commit

Codeline Policy

Smoke Test Unit Test

Regression Test

Release Prep Codeline & Release Codeline

α β Re

l

Pa

t

Task BranchPrivate Versions

r3 r3’ r3’’ r4 r4’ r4’’

5.0

7

6 12

15 14

1

2

4

3

9

13 16

8

5 10 11

Mainline (or Trunk)

Why? The dynamics of the

development could lead to

a complex and cluttered

version tree through many

branches, but branching is

a necessary mechanism to

avoid serialization of work

How? Create a codeline for

development to minimize

integration effort from

branching and merging

Active Development Line

Why? Development

causing rapid and massive

changes to mainline may

also cause instability and

thus making it useless

How? Establish frequent

synchronization points, and

mechanisms such as

integration builds, to protect

soundness through criteria

for check-in

Private Workspace

Why? If all developers work

directly on the mainline,

they would be disturbed by

many irrelevant activities

and conflicting changes

How? Create a separate

workspace for each

individual and/or team to

isolate developers from

others work and do frequent

synchronization to avoid

outdated code

Repository

Why? It can be hard to

identify the right version of

code, components, and

documents for a new

workspace

How? Create repository as

a single point of access to

information. Also consider

other useful mechanisms

than CM system, e.g. file

shares

Private System Build

Why? Changes added to

mainline may break the

build and thus create

problems for other than the

author

How? Isolated build

• Build locally similar to

global integration build

• Include all

dependencies

• Include dependent

components

Integration Build

Why? Because the mainline

is the home codeline, we

need to protect it so it

always builds reliably

How? Continuos integration

• Perform a complete

build

• Do a clean build based

from the CM system

• Do a central frequent

build, e.g. nightly or

continuously

Third Party Codeline

Why? Third party code

needs to be coordinated

into the mainline as

releases are not

synchronized and needs

integration

How? Add third party code,

components (e.g. reusable

java beans), libraries,

frameworks (e.g. NET), etc.

to CM system and branch

Task Level Commit

Why? Committed changes

at the task level align with

work of teams and needs to

be integrated, debugged

and comprehended (by

other that the team authors)

How? Commit new feature,

solved issues, or refactored

parts as whole. Commit at

least once a day, if it makes

sense

Codeline Policy

Why? A group of people

needs to align with rules

and expectations regarding

the way to work

How? Communicate

• Which components are

included in codelines

• How and when to check

in/out and branch/merge

• Data management

• Promotion rules

between codelines

Smoke Test

Why? Protect mainline

integrity from changes but

avoid significant overhead

How? Detect changes that

cause obvious problems,

using 80/20-effort testing

• Quick to run tests

• Automatic and self-

evaluating tests

• Test broad rather than

for deep coverage

• Base test on experience

Unit Test

Why? After introducing a

change, other parts may

have stopped working

violating the full contract of

the components

How? Run unit test on

changed components

• Simple to run tests

• Automatic and self-

evaluating tests

• Fine grained & isolated

• Testing the contract

12: Regression Test

Why? Protect mainline

integrity from side-effects of

changes and recurring

problems avoiding full, and

manual, test

How? Focus on

• Define a set of test

cases reflecting risks

• Build test on cases that

has failed before

• Verify implementation of

requirements

13: Private Versions

Why? Developers needs to

do rapid experimenting and

discovery without breaking

other work in progress, but

a team requires its work

isolated until quality is

established

How? Provide local revision

control area (“scratchpad”)

and support promotion

mechanisms, e.g. from

individual to team space

14: Release Codeline

Why? A release may

require maintenance while

development needs to

continue

How? Support maintenance

• Keep each released

version as a branch

• Allow branches to

progress with bug-fixes

• Merge relevant bug-

fixes back to mainline

15: Release Prep Codeline

Why? Stabilizing code for a

release while development

continues

How? Focus on

• Avoid freezing the

branch when code

approaches release

quality

• Stabilize and update

development codeline

• A branch may be

promoted to become the

release branch

Task Branch

Why? Multiple, long-term,

and overlapping changes

can occur unsynchronized

with mainline, e.g. for an

unknown future release, for

product merges or major

architectural refactoring

How? Create branch to hold

the work and thereby

encapsulate risk and

planning if, how and when

to merge into mainline

again

1 2

9

Software

Configuration

Management

Patterns

Software configuration

management is a complex

discipline because it is a bridge

and an interface between crucial

technical aspects of software

development and management of

the product and solution

These patterns* condensate

important reusable strategies for

organizing configuration

management in the real world

3 4 5 6 7 8

10 11 12 13 14 15 16

www.proces360.dk

V
e
rs

io
n
 1

.0

Why implement software

configuration management?

• Complete view of scope as

deliverables (CI’s)

• Scope management

through change control

• Consistency between

plans and the status of its

work products

• System for creating and

changing work products in

parallel across team(s)

• Information about change,

status of work products and

relations between work

products

• Easy access to project

materials with a known

status

• Ability to store cross-

organization information

• Product level change

control (e.g. by Product

Managers)

• Stakeholder management

regarding product change

• Traceability, supported by

versions, status and

change control

